Prediction of Wrinkling of a Beverage Can Subjected to the Redrawing Process by J2 Deformation Theory

Author:

Kim Jin JaeORCID,Nguyen Phu Van,Kim Young Suk

Abstract

Wrinkling of beverage cans is one of the problems faced by can manufacturers and aluminum suppliers. The bottom of an aluminum can is wrinkled by compression during the forming process. In this study, to predict the occurrence of wrinkles during the redrawing process of AA3104 (t = 0.265 mm), which is the material used to fabricate aluminum cans, the classical plasticity J2 deformation theory (J2D) and flow theory (J2F) were considered. J2F considers only the deformation perpendicular to the yield locus, whereas J2D considers the deformation perpendicular to the yield locus and that tangential to the yield locus. Wrinkles are predicted using finite element (FE) analyses based on J2D and J2F, and the results are compared. J2F could not predict the number and amplitude of wrinkles. By contrast, the wrinkles predicted using J2D exhibited good agreement with sample data obtained for a real can. To find the difference between the results obtained using J2F and J2D, evolutions of stress path in a wrinkled element are compared. It was confirmed that compressive stress is more dominant in the J2D case than in the J2F case. Moreover, the measured effective strain of the element is small, under 0.04. In conclusion, J2D is more suitable for predicting the wrinkling behavior of aluminum cans than J2F. In addition, ANOVA and ANOM analysis are performed to evaluate the influence of the design parameters, namely friction coefficient, thickness, and outer profile angle, and the parameters are optimized to reduce wrinkles by combining the Taguchi method with FE simulation based on the J2D theory.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3