Synthesis of Poly-Alumino-Ferric Sulphate Coagulant from Acid Mine Drainage by Precipitation

Author:

Mwewa Brian,Stopić Srećko,Ndlovu Sehliselo,Simate Geoffrey S.,Xakalashe Buhle,Friedrich BerndORCID

Abstract

The wastes generated from both operational and abandoned coal and metal mining are an environmental concern. These wastes, including acid mine drainage (AMD), are treated to abate the devastating effects they have on the environment before disposal. However, AMD contains valuable resources that can be recovered to subsidize treatment costs. Two of the major constituents of coal AMD are iron and aluminium, which can be recovered and engineered to function as coagulants. This work examines the potential of producing a poly-alumino-ferric sulphate (AMD-PAFS) coagulant from coal acidic drainage solutions. The co-precipitation of iron and aluminium is conducted at pH values of 5.0, 6.0 and 7.0 using sodium hydroxide in order to evaluate the recovery of iron and aluminium as hydroxide precipitates while minimizing the co-precipitation of the other heavy metals. The precipitation at pH 5.0 yields iron and aluminium recovery of 99.9 and 94.7%, respectively. An increase in the pH from 5.0 to 7.0 increases the recovery of aluminium to 99.1%, while the recovery of iron remains the same. The precipitate formed at pH 5.0 is used to produce a coagulant consisting of 89.5% and 10.0% iron and aluminium, respectively. The production of the coagulant is carried out by dissolving the precipitate in 5.0% (w/w) sulphuric acid. Subsequently, the treatment of the brewery wastewater shows that the AMD-PAFS coagulant is as efficient as the conventional poly ferric sulphate (PFS) coagulant. The turbidity removal is 91.9 and 87.8%, while the chemical oxygen demand (COD) removal is 56.0 and 64.0% for AMD-PAFS and PFS coagulants, respectively. The developed process, which can easily be incorporated into existing AMD treatment plants, not only reduces the sludge disposal problems but also creates revenue from waste.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference52 articles.

1. Briefing Note: Acid Mine Drainage in South Africa;Manders,2009

2. Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation;Jacobs,2014

3. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters;Stumm,2012

4. Acid Mine Drainage Treatment;Fripp,2000

5. Acid mine drainage-can it affect human health?;Garland;Quest,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3