Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm

Author:

Blum Wolfgang,Dvořák Jiři,Král Petr,Eisenlohr PhilipORCID,Sklenička Vaclav

Abstract

During quasi-stationary tensile deformation of ultrafine-grained Cu-0.2 mass%Zr at 673 K and a deformation rate of about e - 4 / s load changes were performed. Reductions of relative load by more than about 25% initiate anelastic back flow. Subsequently, the creep rate turns positive again and goes through a relative maximum. This is interpreted by a strain rate component ϵ ˙ - associated with dynamic recovery of dislocations. Back extrapolation indicates that ϵ ˙ - contributes the same fraction of ( 20 ± 10 ) % to the quasi-stationary strain rate that has been reported for coarse-grained materials with high fraction of low-angle boundaries; this suggests that dynamic recovery of dislocations is generally mediated by boundaries. The influence of anelastic back flow on ϵ ˙ - is discussed. Comparison of ϵ ˙ - to the quasi-stationary rate points to enhancement of dynamic recovery by internal stresses. Subtraction of ϵ ˙ - from the total rate yields the rate component ϵ ˙ + related with generation and storage of dislocations; its activation volume is in the order expected from the classical theory of thermal glide.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3