AFM Study of Pyrite Oxidation and Xanthate Adsorption in the Presence of Seawater Salts

Author:

Paredes Álvaro,Acuña Sergio M.ORCID,Toledo Pedro G.

Abstract

The effect of seawater ions presents a great challenge to theories about mechanisms of pyrite oxidation, collector adsorption, and surface reactions. As the use of seawater is key to the sustainability of the mining industry in regions without fresh water, there is a need to study the surfaces of minerals and products that are formed in the presence of seawater salts. In this study, atomic force microscopy (AFM) was used to analyze the topography of pyrite surfaces subjected to treatments, including oxidation and exposure to xanthate and solutions of seawater salts and xanthate, at pH 8.5. Topographic details were related to surface products. The results showed that xanthate was adsorbed without hindrance on oxide-free pyrite which validated one well-known model. The results also showed that pyrite oxidized forming a structure of interconnected pillars and that xanthate was adsorbed on the top and skirt of these pillars; the experimental evidence on the increase in the height and width of these pillars validated another well-known model. In the presence of seawater salts, the cations covered the surface of the pyrite, suppressing collector adsorption regardless of the dose. The results are expected to help in decisions about the flotation of sulfide minerals in water with limited metallurgical quality.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference35 articles.

1. The role of dixanthogen in xanthate flotation of pyrite;Fuerstenau;Trans. Soc. Min. Eng. AIME,1968

2. A review of electrokinetic studies of metal sulphides;Healy,1976

3. The role of collector in sulfide ore flotation;Shannon,1986

4. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals

5. Ultraviolet-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3