Experimental and Numerical Study on Microstructure and Mechanical Properties of Ti-6Al-4V/Al-1060 Explosive Welding

Author:

Mahmood Yasir,Dai KaidaORCID,Chen Pengwan,Zhou Qiang,Bhatti Ashfaq Ahmad,Arab Ali

Abstract

The aim of this paper is to study the microstructure and mechanical properties of the Ti6Al4V/Al-1060 plate by explosive welding before and after heat treatment. The welded interface is smooth and straight without any jet trapping. The disturbances near the interface, circular and random pores of Al-1060, and beta phase grains of Ti6Al4V have been observed by Scanning electron microscopy (SEM). Heat treatment reduces pores significantly and generates a titanium-island-like morphology. Energy dispersive spectroscopy (EDS) analysis results show that the maximum portion of the interfacial zone existed in the aluminium side, which is composed of three intermetallic phases: TiAl, TiAl2 and TiAl3. Heat treatment resulted in the enlargement of the interfacial zone and conversion of intermentallic phases. Tensile test, shear test, bending test and hardness test were performed to examine the mechanical properties including welding joint qualities. The results of mechanical tests show that the tensile strength and welding joint strength of the interfacial region are larger than one of its constituent material (Al-1060), the microhardness near the interface is maximum. Besides, tensile strength, shear strength and microhardness of heat treated samples are smaller than unheat treated. Smooth particle hydrodynamic (SPH) method is used to simulate the transient behaviour of both materials at the interface. Transient pressure, plastic deformation and temperature on the flyer and base side during the welding process were obtained and analyzed. Furthermore, the numerical simulation identified that almost straight bonding structure is formed on the interface, which is in agreement with experimental observation.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3