Recovery of Rare Earth Oxide from Waste NiMH Batteries by Simple Wet Chemical Valorization Process

Author:

Ahn Nak-KyoonORCID,Swain BasudevORCID,Shim Hyun-Woo,Kim Dae-Weon

Abstract

Nickel metal hydride (NiMH) batteries contain a significant amount of rare earth metals (REMs) such as Ce, La, and Nd, which are critical to the supply chain. Recovery of these metals from waste NiMH batteries can be a potential secondary resource for REMs. In our current REM recovery process, REM oxide from waste NiMH batteries was recovered by a simple wet chemical valorization process. The process followed the chemical metallurgy process to recover REM oxides and included the following stages: (1) H2SO4 leaching; (2) selective separation of REM as sulfate salt from Ni/Co sulfate solution; (3) metathesis purification reaction process for the conversion REM sulfate to REM carbonate; and (4) recovery of REM oxide from REM carbonate by heat treatment. Through H2SO4 leaching optimization, almost all the metal from the electrode active material of waste NiMH batteries was leached out. From the filtered leach liquor managing pH (at pH 1.8) with 10 M NaOH, REM was precipitated as hydrated NaREE(SO4)2·H2O, which was then further valorized through the metathesis reaction process. From NaREE(SO4)2·H2O through carbocation, REM was purified as hydrated (REM)2CO3·H2O precipitate. From (REM)2CO3·H2O through calcination at 800 °C, (REM)2O3 could be recovered.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference20 articles.

1. Critical Raw Materialshttp://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en

2. Study on the review of the list of Critical Raw Materials Critical Raw Materials Factsheets Publications Office of the European Union,2017

3. Energy Critical Elementshttps://www.aps.org/policy/reports/popa-reports/upload/elementsreport.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3