Riverbed Changes of the Uppermost Atchafalaya River, USA—A Case Study of Channel Dynamics in Large Man-Controlled Alluvial River Confluences

Author:

Wang Bo,Xu Y. JunORCID,Xu Wei,Cheng Heqin,Chen Zhongyuan,Zhang Weiguo

Abstract

River confluences are important nodes for downstream sediment transport and geomorphological development. Previous studies have established the knowledge that under natural conditions, river confluence zones experience channel scour followed with middle channel bar development. Less care is however given to the intensity of a confluence scour zone under man-controlled conditions, such as discharge regulation and levee confinement. In general, our knowledge about long-term bed evolution downstream of large alluvial river confluences is limited. Here we conducted a study focused on the 69-km uppermost channel of the Atchafalaya River, the largest distributary of the Mississippi River, to test the hypothesis that the channel downstream of two large tributaries sustains longer-term, extensive bed scouring owing to increased discharge in the main channel and, therefore, mid-channel bars in such a confluence zone cannot be built under confined channel conditions. The Atchafalaya River carries the total flow from the Red River and approximately 25% of the Mississippi River flow, traveling southwards 230 km before emptying into the Gulf of Mexico. We utilized long-term records on water surface elevation and discharge during 1935–2016, as well as channel bathymetry survey data during 1998–2006 to determine changes in hydraulic head and morphologic deformation in the confluence zone. The results from this study show that the combined flow from the Red River and Mississippi River into the Atchafalaya River steadily increased to approximately 5848 cubic meters per second (m3 s−1) in the recent decades, and the channel bed of the uppermost Atchafalaya River experienced considerable erosion since the 1930s. At a specific discharge of 8000 ± 100 m3 s−1, the river stage decreased by 5.8, 5.6, and 4.9 m from 1935 to 2016 at (from upstream to downstream) Simmesport, Melville, and Krotz Springs gauging stations, respectively. The average bed elevation reduced by 1.9 m from 1998 to 2006, although its thalweg increased by 0.3 m. Based on the channel bed assessment, a total volume of 6.6 × 107 m3 sediment was eroded from the uppermost 69 km of the Atchafalaya over the 8 years. The findings suggest that confluence zones of large alluvial rivers under controlled flow and confined levee conditions can experience extensive, long-lasting channel erosion. This can be especially progressive if the channel below a confluence is confined by levees, which can increase drag forces and prevent middle channel deposition. Further studies are needed to determine if the eroded sediment from the uppermost Atchafalaya is carried out to the river mouth or is deposited in the lower Atchafalaya. Such knowledge will have both scientific and practical relevance in river engineering and management.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference58 articles.

1. An Experimental Study of Channel Confluences

2. A note on changes in channel geometry at tributary junctions

3. Confluence scour in coarse braided streams

4. Flow dynamics at river channel confluences; implications for sediment transport and bed morphology;Best;Spec. Publ. Soc. Econ. Paleontol. Mineral.,1987

5. Separation Zone at Open‐Channel Junctions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3