Design of a Multi-Sensor System for Exploring the Relation between Finger Spasticity and Voluntary Movement in Patients with Stroke

Author:

Lin Bor-ShingORCID,Lee I-JungORCID,Hsiao Pei-Chi,Yang Shu-Yu,Chen Chen-Yu,Lee Si-Huei,Huang Yu-Fang,Yen Mao-Hsu,Hu Yu HenORCID

Abstract

A novel wearable multi-sensor data glove system is developed to explore the relation between finger spasticity and voluntary movement in patients with stroke. Many stroke patients suffer from finger spasticity, which is detrimental to their manual dexterity. Diagnosing and assessing the degrees of spasticity require neurological testing performed by trained professionals to estimate finger spasticity scores via the modified Ashworth scale (MAS). The proposed system offers an objective, quantitative solution to assess the finger spasticity of patients with stroke and complements the manual neurological test. In this work, the hardware and software components of this system are described. By requiring patients to perform five designated tasks, biomechanical measurements including linear and angular speed, acceleration, and pressure at every finger joint and upper limb are recorded, making up more than 1000 features for each task. We conducted a preliminary clinical test with 14 subjects using this system. Statistical analysis is performed on the acquired measurements to identify a small subset of features that are most likely to discriminate a healthy patient from patients suffering from finger spasticity. This encouraging result validates the feasibility of this proposed system to quantitatively and objectively assess finger spasticity.

Funder

Ministry of Science and Technology in Taiwan

Chi Mei Medical Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3