A Framework Model of Mining Potential Public Opinion Events Pertaining to Suspected Research Integrity Issues with the Text Convolutional Neural Network model and a Mixed Event Extractor

Author:

Zou Zongfeng1ORCID,Ji Xiaochen1ORCID,Li Yingying1

Affiliation:

1. School of Management, Shanghai University, Shanghai 200444, China

Abstract

With the development of the Internet, the oversight of research integrity issues has extended beyond the scientific community to encompass the whole of society. If these issues are not addressed promptly, they can significantly impact the research credibility of both institutions and scholars. This article proposes a text convolutional neural network based on SMOTE to identify short texts of potential public opinion events related to suspected scientific integrity issues from common short texts. The SMOTE comprehensive sampling technique is employed to handle imbalanced datasets. To mitigate the impact of short text length on text representation quality, the Doc2vec embedding model is utilized to represent short text, yielding a one-dimensional dense vector. Additionally, the dimensions of the input layer and convolution kernel of TextCNN are adjusted. Subsequently, a short text event extraction model based on TF-IDF and TextRank is proposed to extract crucial information, for instance, names and research-related institutions, from events and facilitate the identification of potential public opinion events related to suspected scientific integrity issues. Results of experiments have demonstrated that utilizing SMOTE to balance the dataset is able to improve the classification results of TextCNN classifiers. Compared to traditional classifiers, TextCNN exhibits greater robustness in addressing the problems of imbalanced datasets. However, challenges such as low information content, non-standard writing, and polysemy in short texts may impact the accuracy of event extraction. The framework can be further optimized to address these issues in the future.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3