Advancing Medical Assistance: Developing an Effective Hungarian-Language Medical Chatbot with Artificial Intelligence

Author:

Simon Barbara1ORCID,Hartveg Ádám1ORCID,Dénes-Fazakas Lehel123ORCID,Eigner György12ORCID,Szilágyi László124ORCID

Affiliation:

1. Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary

2. Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary

3. Doctoral School of Applied Informatics and Applied Mathematics, Obuda University, 1034 Budapest, Hungary

4. Computational Intelligence Research Group, Sapientia Hungarian University of Transylvania, 540485 Tîrgu Mureș, Romania

Abstract

In recent times, the prevalence of chatbot technology has notably increased, particularly in the realm of medical assistants. However, there is a noticeable absence of medical chatbots that cater to the Hungarian language. Consequently, Hungarian-speaking people currently lack access to an automated system capable of providing assistance with their health-related inquiries or issues. Our research aims to establish a competent medical chatbot assistant that is accessible through both a website and a mobile app. It is crucial to highlight that the project’s objective extends beyond mere linguistic localization; our goal is to develop an official and effectively functioning Hungarian chatbot. The assistant’s task is to answer medical questions, provide health advice, and inform users about health problems and treatments. The chatbot should be able to recognize and interpret user-provided text input and offer accurate and relevant responses using specific algorithms. In our work, we put a lot of emphasis on having steady input so that it can detect all the diseases that the patient is dealing with. Our database consisted of sentences and phrases that a user would type into a chatbot. We assigned health problems to these and then assigned the categories to the corresponding cure. Within the research, we developed a website and mobile app, so that users can easily use the assistant. The app plays a particularly important role for users because it allows them to use the assistant anytime and anywhere, taking advantage of the portability of mobile devices. At the current stage of our research, the precision and validation accuracy of the system is greater than 90%, according to the selected test methods.

Funder

National Research, Development and Innovation Fund of Hungary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3