Unmasking Banking Fraud: Unleashing the Power of Machine Learning and Explainable AI (XAI) on Imbalanced Data

Author:

Nobel S. M. Nuruzzaman1ORCID,Sultana Shirin1,Singha Sondip Poul1ORCID,Chaki Sudipto1ORCID,Mahi Md. Julkar Nayeen2ORCID,Jan Tony3ORCID,Barros Alistair4,Whaiduzzaman Md34ORCID

Affiliation:

1. Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh

2. Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh

3. Design and Creative Technologies, Torrens University, Brisbane, QLD 4006, Australia

4. School of Information Systems, Queensland University of Technology, Brisbane, QLD 4000, Australia

Abstract

Recognizing fraudulent activity in the banking system is essential due to the significant risks involved. When fraudulent transactions are vastly outnumbered by non-fraudulent ones, dealing with imbalanced datasets can be difficult. This study aims to determine the best model for detecting fraud by comparing four commonly used machine learning algorithms: Support Vector Machine (SVM), XGBoost, Decision Tree, and Logistic Regression. Additionally, we utilized the Synthetic Minority Over-sampling Technique (SMOTE) to address the issue of class imbalance. The XGBoost Classifier proved to be the most successful model for fraud detection, with an accuracy of 99.88%. We utilized SHAP and LIME analyses to provide greater clarity into the decision-making process of the XGBoost model and improve overall comprehension. This research shows that the XGBoost Classifier is highly effective in detecting banking fraud on imbalanced datasets, with an impressive accuracy score. The interpretability of the XGBoost Classifier model was further enhanced by applying SHAP and LIME analysis, which shed light on the significant features that contribute to fraud detection. The insights and findings presented here are valuable contributions to the ongoing efforts aimed at developing effective fraud detection systems for the banking industry.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3