Object Tracking Based on Optical Flow Reconstruction of Motion-Group Parameters

Author:

Karpuzov Simeon1ORCID,Petkov George1ORCID,Ilieva Sylvia1ORCID,Petkov Alexander2ORCID,Kalitzin Stiliyan34ORCID

Affiliation:

1. GATE Institute, Sofia University, 1113 Sofia, Bulgaria

2. Physics Department, University of Bristol, Bristol BS8 1QU, UK

3. Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

4. Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands

Abstract

Rationale. Object tracking has significance in many applications ranging from control of unmanned vehicles to autonomous monitoring of specific situations and events, especially when providing safety for patients with certain adverse conditions such as epileptic seizures. Conventional tracking methods face many challenges, such as the need for dedicated attached devices or tags, influence by high image noise, complex object movements, and intensive computational requirements. We have developed earlier computationally efficient algorithms for global optical flow reconstruction of group velocities that provide means for convulsive seizure detection and have potential applications in fall and apnea detection. Here, we address the challenge of using the same calculated group velocities for object tracking in parallel. Methods. We propose a novel optical flow-based method for object tracking. It utilizes real-time image sequences from the camera and directly reconstructs global motion-group parameters of the content. These parameters can steer a rectangular region of interest surrounding the moving object to follow the target. The method successfully applies to multi-spectral data, further improving its effectiveness. Besides serving as a modular extension to clinical alerting applications, the novel technique, compared with other available approaches, may provide real-time computational advantages as well as improved stability to noisy inputs. Results. Experimental results on simulated tests and complex real-world data demonstrate the method’s capabilities. The proposed optical flow reconstruction can provide accurate, robust, and faster results compared to current state-of-the-art approaches.

Funder

De Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie”. Program 35401

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3