Exploring Prosodic Features Modelling for Secondary Emotions Needed for Empathetic Speech Synthesis

Author:

James Jesin1,B.T. Balamurali2ORCID,Watson Catherine1,Mixdorff Hansjörg3

Affiliation:

1. Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand

2. Science, Maths and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

3. Computer Science and Media, Berliner Hochschule für Technik, 13353 Berlin, Germany

Abstract

A low-resource emotional speech synthesis system for empathetic speech synthesis based on modelling prosody features is presented here. Secondary emotions, identified to be needed for empathetic speech, are modelled and synthesised in this investigation. As secondary emotions are subtle in nature, they are difficult to model compared to primary emotions. This study is one of the few to model secondary emotions in speech as they have not been extensively studied so far. Current speech synthesis research uses large databases and deep learning techniques to develop emotion models. There are many secondary emotions, and hence, developing large databases for each of the secondary emotions is expensive. Hence, this research presents a proof of concept using handcrafted feature extraction and modelling of these features using a low-resource-intensive machine learning approach, thus creating synthetic speech with secondary emotions. Here, a quantitative-model-based transformation is used to shape the emotional speech’s fundamental frequency contour. Speech rate and mean intensity are modelled via rule-based approaches. Using these models, an emotional text-to-speech synthesis system to synthesise five secondary emotions-anxious, apologetic, confident, enthusiastic and worried-is developed. A perception test to evaluate the synthesised emotional speech is also conducted. The participants could identify the correct emotion in a forced response test with a hit rate greater than 65%.

Funder

University of Auckland Postgraduate Research Student Support fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3