EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats

Author:

Deebak B. D.1,Al-Turjman Fadi23ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Gyeonggido, Seongnam 13120, Republic of Korea

2. Artificial Intelligence Engineering Deptartment, AI and Robotics Institute, Near East University, Mersin 10, Turkey

3. Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey

Abstract

Coronavirus disease 2019 (COVID-19) has caused severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across the globe, impacting effective diagnosis and treatment for any chronic illnesses and long-term health implications. In this worldwide crisis, the pandemic shows its daily extension (i.e., active cases) and genome variants (i.e., Alpha) within the virus class and diversifies the association with treatment outcomes and drug resistance. As a consequence, healthcare-related data including instances of sore throat, fever, fatigue, cough, and shortness of breath are given due consideration to assess the conditional state of patients. To gain unique insights, wearable sensors can be implanted in a patient’s body that periodically generates an analysis report of the vital organs to a medical center. However, it is still challenging to analyze risks and predict their related countermeasures. Therefore, this paper presents an intelligent Edge-IoT framework (IE-IoT) to detect potential threats (i.e., behavioral and environmental) in the early stage of the disease. The prime objective of this framework is to apply a new pre-trained deep learning model enabled by self-supervised transfer learning to build an ensemble-based hybrid learning model and to offer an effective analysis of prediction accuracy. To construct proper clinical symptoms, treatment, and diagnosis, an effective analysis such as STL observes the impact of the learning models such as ANN, CNN, and RNN. The experimental analysis proves that the ANN model considers the most effective features and attains a better accuracy (~98.3%) than other learning models. Also, the proposed IE-IoT can utilize the communication technologies of IoT such as BLE, Zigbee, and 6LoWPAN to examine the factor of power consumption. Above all, the real-time analysis reveals that the proposed IE-IoT with 6LoWPAN consumes less power and response time than the other state-of-the-art approaches to infer the suspected victims at an early stage of development of the disease.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. Considerations for diagnostic COVID-19 tests;Vandenberg;Nat. Rev. Microbiol.,2021

2. COVID-19 in early 2021: Current status and looking forward;Wang;Signal Transduct. Target. Ther.,2021

3. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing;Shrivastava;Chem. Soc. Rev.,2020

4. Artificial Intelligence (AI) applications for COVID-19 pandemic;Vaishya;Diabetes Metab. Syndr. Clin. Res. Rev.,2020

5. AYUSH-64 as an adjunct to Standard Care in mild to moderate COVID-19: An open-label randomized controlled trial in Chandigarh, India;Singh;Complement. Ther. Med.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3