Synthesis, Structural Characterization and Catalytic Evaluation of Anionic Phosphinoferrocene Amidosulfonate Ligands

Author:

Schulz Jiří,Horký Filip,Císařová Ivana,Štěpnička PetrORCID

Abstract

Triethylammonium salts of phosphinoferrocene amidosulfonates with electron-rich dialkyphosphino substituents, R2PfcCONHCH2SO3(HNEt3) (4a–c), where fc = ferrocene-1,1′-diyl, and R = i-Pr (a), cyclohexyl (Cy; b), and t-butyl (c), were synthesized from the corresponding phosphinocarboxylic acids-borane adducts, R2PfcCO2H·BH3 (1a–c), via esters R2PfcCO2C6F5·BH3 (2a–c) and adducts R2PfcCONHCH2SO3(HNEt3)·BH3 (3a–c). Compound 4b was shown to react with [Pd(μ-Cl)(η-C3H5)]2 and AgClO4 to afford the zwitterionic complex [Pd(η3-C3H5)(Cy2PfcCONHCH2SO3-κ2O,P)] (5b), in which the amidosulfonate ligand coordinates as a chelating donor making use of its phosphine moiety and amide oxygen. The structures of 3b·CH2Cl2, 4b and 5b·CH2Cl2 were determined by single-crystal X-ray diffraction analysis. Compounds 4a–c and their known diphenylphosphino analogue, Ph2PfcCONHCH2SO3(HNEt3) (4d), were studied as supporting ligands in Pd-catalyzed cyanation of aryl bromides with K4[Fe(CN)6] and in Suzuki–Miyaura biaryl cross-coupling performed in aqueous reaction media under mild reaction conditions. In the former reaction, the best results were achieved with a catalyst generated from [PdCl2(cod)] (cod = η2:η2-cycloocta-1,5-diene) and 2 equiv. of the least electron-rich ligand 4d in dioxane–water as a solvent. In contrast, the biaryl coupling was advantageously performed with a catalyst resulting from palladium(II) acetate and ligand 4a (1 equiv.) in the same solvent.

Funder

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3