Synthesis of Fe3O4@mZrO2-Re (Re = Y/La/Ce) by Using Uniform Design, Surface Response Methodology, and Orthogonal Design & Its Application for As3+ and As5+ Removal

Author:

Alam EasarORCID,Feng Qiyan,Yang Hong,Fan Jiaxi,Mumtaz Sameena,Begum FaridaORCID

Abstract

In this study, iron oxide (Fe3O4) was coated with ZrO2, and doped with three rare earth elements((Y/La/Ce), and a multi-staged rare earth doped zirconia adsorbent was prepared by using uniform design U14, Response Surface methodology, and orthogonal design, to remove As3+ and As5+ from the aqueous solution. Based on the results of TEM, EDS, XRD, FTIR, and N2-adsorption desorption test, the best molar ratio of Fe3O4:TMAOH:Zirconium butoxide:Y:La:Ce was selected as 1:12:11:1:0.02:0.08. The specific surface area and porosity was 263 m2/g, and 0.156 cm3/g, respectively. The isothermal curves and fitting equation parameters show that Langmuir model, and Redlich Peterson model fitted well. As per calculations of the Langmuir model, the highest adsorption capacities for As3+ and As5+ ions were recorded as 68.33 mg/g, 84.23 mg/g, respectively. The fitting curves and equations of the kinetic models favors the quasi second order kinetic model. Material regeneration was very effective, and even in the last cycle the regeneration capacities of both As3+ and As5+ were 75.15%, and 77.59%, respectively. Adsorption and regeneration results suggest that adsorbent has easy synthesis method, and reusable, so it can be used as a potential adsorbent for the removal of arsenic from aqueous solution.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3