The Effect of Annealing Ambience on the Material and Photodetector Characteristics of Sputtered ZnGa2O4 Films

Author:

Singh Anoop KumarORCID,Huang Shiau-Yuan,Chen Po-Wei,Chiang Jung-Lung,Wuu Dong-SingORCID

Abstract

Spinel ZnGa2O4 films were grown on c-plane sapphire substrates at the substrate temperature of 400 °C by radio-frequency magnetron sputtering. Post thermal annealing was employed at the annealing temperature of 700 °C in order to enhance their crystal quality. The effect of thermal annealing on the microstructural and optoelectronic properties of ZnGa2O4 films was systematically investigated in various ambiences, such as air, nitrogen, and oxygen. The X-ray diffraction patterns of annealed ZnGa2O4 films showed the crystalline structure to have (111) crystallographic planes. Transmission electron micrographs verified that ZnGa2O4 film annealed under air ambience possesses a quasi-single-crystalline structure. This ZnGa2O4 film annealed under air ambience exhibited a smooth surface, an excellent average transmittance above 82% in the visible region, and a wide bandgap of 5.05 eV. The oxygen vacancies under different annealing ambiences were revealed a substantial impact on the material and photodetector characteristics by X-ray photoelectron spectrum investigations. ZnGa2O4 film exhibits optimal performance as a metal-semiconductor-metal photodetector when annealed under air ambience. Under these conditions, ZnGa2O4 film exhibits a higher photo/dark current ratio of ~104 order, as well as a high responsivity of 2.53 A/W at the bias of 5 V under an incident optical light of 240 nm. These results demonstrate that quasi-single-crystalline ZnGa2O4 films have significant potential in deep-ultraviolet applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3