Facile Sulfurization under Ambient Condition with Na2S to Fabricate Nanostructured Copper Sulfide

Author:

Hwang Eunseo,Park Yoonsu,Kim Jongbae,Paik Taejong,Ha Don-Hyung

Abstract

The sulfurization reaction was investigated as a promising fabrication method for preparing metal sulfide nanomaterials. Traditional sulfurization processes generally require high vacuum systems, high reaction temperatures, and toxic chemicals, utilizing complicated procedures with poor composition and morphology controllability. Herein, a facile method is reported for synthesizing nanostructured copper sulfide using a sulfurization reaction with Na2S at room temperature under non-vacuum conditions. Moreover, we demonstrate that the morphology, composition, and optical properties of nanostructured copper sulfides could be controlled by the Na2S solution concentration and the reaction time. Nanostructured copper sulfides were synthesized in nanospheres, nanoplates, and nanoplate-based complex morphologies with various oxidation states. Furthermore, by comparing the optical properties of nanostructured copper sulfides with different oxidation states, we determined that reflectivity in the near infrared (NIR) region decreases with increasing oxidation states. These results reveal that the Na2S solution concentration and reaction time are key factors for designing nanostructured copper sulfides, providing new insights for synthesis methods of metal sulfide nanomaterials.

Funder

National Research Foundation of Korea

Chung-Ang University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3