Enhanced Electrochemical Performance of LiNi0.5Mn1.5O4 Composite Cathodes for Lithium-Ion Batteries by Selective Doping of K+/Cl− and K+/F−

Author:

Wei Aijia,Mu Jinping,He Rui,Bai Xue,Li Xiaohui,Zhang Lihui,Wang Yanji,Liu ZhenfaORCID,Wang Suning

Abstract

K+/Cl− and K+/F− co-doped LiNi0.5Mn1.5O4 (LNMO) materials were successfully synthesized via a solid-state method. Structural characterization revealed that both K+/Cl− and K+/F− co-doping reduced the LixNi1−xO impurities and enlarged the lattice parameters compared to those of pure LNMO. Besides this, the K+/F− co-doping decreased the Mn3+ ion content, which could inhibit the Jahn–Teller distortion and was beneficial to the cycling performance. Furthermore, both the K+/Cl− and the K+/F− co-doping reduced the particle size and made the particles more uniform. The K+/Cl− co-doped particles possessed a similar octahedral structure to that of pure LNMO. In contrast, as the K+/F− co-doping amount increased, the crystal structure became a truncated octahedral shape. The Li+ diffusion coefficient calculated from the CV tests showed that both K+/Cl− and K+/F− co-doping facilitated Li+ diffusion in the LNMO. The impedance tests showed that the charge transfer resistances were reduced by the co-doping. These results indicated that both the K+/Cl− and the K+/F− co-doping stabilized the crystal structures, facilitated Li+ diffusion, modified the particle morphologies, and increased the electrochemical kinetics. Benefiting from the unique advantages of the co-doping, the K+/Cl− and K+/F− co-doped samples exhibited improved rate and cycling performances. The K+/Cl− co-doped Li0.97K0.03Ni0.5Mn1.5O3.97Cl0.03 (LNMO-KCl0.03) exhibited the best rate capability with discharge capacities of 116.1, 109.3, and 93.9 mAh g−1 at high C-rates of 5C, 7C, and 10C, respectively. Moreover, the K+/F− co-doped Li0.98K0.02Ni0.5Mn1.5O3.98F0.02 (LNMO-KF0.02) delivered excellent cycling stability, maintaining 85.8% of its initial discharge capacity after circulation for 500 cycles at 5C. Therefore, the K+/Cl− or K+/F− co-doping strategy proposed herein will play a significant role in the further construction of other high-voltage cathodes for high-energy LIBs.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3