Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect

Author:

Farcas CatalinaORCID,Galao OscarORCID,Vertuccio Luigi,Guadagno LiberataORCID,Romero-Sánchez M. Dolores,Rodríguez-Pastor Iluminada,Garcés Pedro

Abstract

In this study, CNTs and graphite have been incorporated to provide electrical conductivity and self-heating capacity by Joule effect to an epoxy matrix. Additionally, both types of fillers, with different morphology, surface area and aspect ratio, were simultaneously incorporated (hybrid CNTs and graphite addition) into the same epoxy matrix to evaluate the effect of the self-heating capacity of carbon materials-based resins on de-icing and ice-prevention capacity. The self-heating capacity by Joule effect and the thermal conductivity of the differently filled epoxy resin were evaluated for heating applications at room temperature and at low temperatures for de-icing and ice-prevention applications. The results show that the higher aspect ratio of the CNTs determined the higher electrical conductivity of the epoxy resin compared to that of the epoxy resin filled with graphite, but the 2D morphology of graphite produced the higher thermal conductivity of the filled epoxy resin. The presence of graphite enhanced the thermal stability of the filled epoxy resin, helping avoid its deformation produced by the softening of the epoxy resin (the higher the thermal conductivity, the higher the heat dissipation), but did not contribute to the self-heating by Joule effect. On the other hand, the feasibility of electrically conductive epoxy resins for de-icing and ice-prevention applications by Joule effect was demonstrated.

Funder

H2020 LEIT Nanotechnologies

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3