Magnetic Characterization by Scanning Microscopy of Functionalized Iron Oxide Nanoparticles

Author:

Gutierrez Frederico V.,De Falco AnnaORCID,Yokoyama ElderORCID,Mendoza Leonardo A. F.,Luz-Lima CleanioORCID,Perez Geronimo,Loreto Renan P.ORCID,Pottker Walmir E.,La Porta Felipe A.ORCID,Solorzano Guillermo,Arsalani Soudabeh,Baffa OswaldoORCID,Araujo Jefferson F. D. F.ORCID

Abstract

This study aimed to systematically understand the magnetic properties of magnetite (Fe3O4) nanoparticles functionalized with different Pluronic F-127 surfactant concentrations (Fe3O4@Pluronic F-127) obtained by using an improved magnetic characterization method based on three-dimensional magnetic maps generated by scanning magnetic microscopy. Additionally, these Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles, as promising systems for biomedical applications, were prepared by a wet chemical reaction. The magnetization curve was obtained through these three-dimensional maps, confirming that both Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles have a superparamagnetic behavior. The as-prepared samples, stored at approximately 20 °C, showed no change in the magnetization curve even months after their generation, resulting in no nanoparticles free from oxidation, as Raman measurements have confirmed. Furthermore, by applying this magnetic technique, it was possible to estimate that the nanoparticles’ magnetic core diameter was about 5 nm. Our results were confirmed by comparison with other techniques, namely as transmission electron microscopy imaging and diffraction together with Raman spectroscopy. Finally, these results, in addition to validating scanning magnetic microscopy, also highlight its potential for a detailed magnetic characterization of nanoparticles.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference49 articles.

1. NanoScience in Biomedicine;Shi,2009

2. Stem Cells and Nanostructured Materials;Beachley,2009

3. Biomedical Polymer Nanofibers for Emerging Technology;Park,2009

4. Nanoscale Mechanisms for Assembly of Biomaterials;Sui,2009

5. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3