Controlled Lattice Thermal Conductivity of Transparent Conductive Oxide Thin Film via Localized Vibration of Doping Atoms

Author:

Choi Young Joong,Lee Ho Yun,Kim Seohan,Song Pung Keun

Abstract

Amorphization using impurity doping is a promising approach to improve the thermoelectric properties of tin-doped indium oxide (ITO) thin films. However, an abnormal phenomenon has been observed where an excessive concentration of doped atoms increases the lattice thermal conductivity (κl). To elucidate this paradox, we propose two hypotheses: (1) metal hydroxide formation due to the low bond enthalpy energy of O and metal atoms and (2) localized vibration due to excessive impurity doping. To verify these hypotheses, we doped ZnO and CeO2, which have low and high bond enthalpies with oxygen, respectively, into the ITO thin film. Regardless of the bond enthalpy energy, the κl values of the two thin films increased due to excessive doping. Fourier transform infrared spectroscopy was conducted to determine the metal hydroxide formation. There was no significant difference in wave absorbance originating from the OH stretching vibration. Therefore, the increase in κl due to the excessive doping was due to the formation of localized regions in the thin film. These results could be valuable for various applications using other transparent conductive oxides and guide the control of the properties of thin films.

Funder

National Research Foundation of Korea

R&D Platform Establishment of Eco-Friendly Hydrogen Propulsion Ship Program

Ministry of Environment

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3