Abstract
We developed a complex three-dimensional (3D) multilayer deposition method for the fabrication of single-walled carbon nanotubes (SWCNTs) using vacuum filtration and plasmonic carbonization without lithography and etching processes. Using this fabrication method, SWCNTs can be stacked to form complex 3D structures that have a large surface area relative to the unit volume compared to the single-plane structure of conventional SWCNTs. We characterized 3D multilayer SWCNT patterns using a surface optical profiler, Raman spectroscopy, sheet resistance, scanning electron microscopy, and contact angle measurements. Additionally, these carbon nanotube (CNT) patterns showed excellent mechanical stability even after elastic bending tests more than 1000 times at a radius of 2 mm.
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献