TiO2-Supported Pd as an Efficient and Stable Catalyst for the Mild Hydrotreatment of Tar-Type Compounds

Author:

Raad ZaherORCID,Toufaily JoumanaORCID,Hamieh TayssirORCID,Domine Marcelo E.ORCID

Abstract

The mild hydrotreatment of a model mixture of tar-type compounds (i.e., naphthalene, 1-methylnaphthalene, acenaphthylene, and phenanthrene) to produce partially hydrogenated products in the range of C9–C15 was studied over Pd supported on TiO2 possessing different crystalline phases. Pd-based catalysts were prepared and characterized by ICP analysis, XRD, N2 adsorption isotherms, HR-TEM, and NH3-TPD, among others. The hydrotreatment activity and selectivity towards the desired hydrogenated products (i.e., tetralin and others) increased with both the acidity and surface area of the catalyst, along with the presence of small and well distributed Pd nanoparticles. For the selected 1.3 wt% Pd/TiO2 nano catalyst, the operational conditions for maximizing tar conversion were found to be 275 °C, 30 bar of H2, and 0.2 g of catalyst for 7 h. The catalyst revealed remarkable hydrotreatment activity and stability after several reuses with practically no changes in TiO2 structure, quite low carbon deposition, and any Pd leaching detected, thus maintaining both a small Pd particle size and adequate distribution, even after regeneration of the catalyst. Additionally, the Pd/TiO2 nano catalyst was demonstrated to be more active than other commonly used metal/alumina and more selective than metal/USY zeolites in the mild hydrotreatment of tar-type compounds, thus providing an efficient catalytic route for obtaining partially hydrogenated C9–C15 hydrocarbons useful as jet-fuel components or additives (improvers), as well as chemicals and solvents for industrial applications.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3