Abstract
The visualization of near infrared hyperspectral images is valuable for quick view and information survey, whereas methods using band selection or dimension reduction fail to produce good colors as reasonable as corresponding multispectral images. In this paper, an end-to-end neural network of hyperspectral visualization is proposed, based on the convolutional neural networks, to transform a hyperspectral image of hundreds of near infrared bands to a three-band image. Supervised learning is used to train the network where multispectral images are targeted to reconstruct naturally looking images. Each pair of the training images shares the same geographic location and similar moments. The generative adversarial framework is used with an adversarial network to improve the training of the generating network. In the experimental procedure, the proposed method is tested for the near infrared bands of EO-1 Hyperion images with LandSat-8 images as the benchmark, which is compared with five state-of-the-art visualization algorithms. The experimental results show that the proposed method performs better in producing naturally looking details and colors for near infrared hyperspectral images.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献