Landscape-Scale Crop Lodging Assessment across Iowa and Illinois Using Synthetic Aperture Radar (SAR) Images

Author:

Ajadi Olaniyi A.,Liao Heming,Jaacks JasonORCID,Delos Santos Alfredo,Kumpatla Siva P.,Patel Rinkal,Swatantran Anu

Abstract

Crop lodging, the tilting of stems from their natural upright position, usually occurs after a heavy storm event. Since lodging of a crop seriously affects its yield, rapid assessment of crop lodging is valuable for farmers, policymakers, agronomists, insurance companies, and relief workers. Synthetic Aperture Radar (SAR) sensors have been recognized as valuable data sources for mapping lodging extent because of their good penetrating power and high-resolution remote sensing ability. Compared to other sources, SAR’s weather and illumination independence and large area coverage at fine spatial resolution (3 m to 20 m) support frequent and detailed observations. Because of these advantages, SAR has the potential in supporting near real-time monitoring of lodging in fields when combined with automated image processing. In this study, a method based on change detection using modified Hidden Markov Random Field (HMRF) and Sentinel-1A data were utilized to identify lodging and map its extent. Results obtained have shown that when lodging occurs, the VH polarization’s backscatter (σVH) increases between the pre-lodging event image and the post-lodging event image. The increase in σVH is due to the increase in volume scattering and vegetation-soil double bounce scattering resulting from the structural changes in the crop canopy. Using Sentinel-1A images and applying our proposed approach across several fields in Iowa and Illinois, we mapped the extent of the 2020 Derecho (wind storm) lodging disaster. In addition, we separated lodged regions into severely and moderately lodged areas. We estimated that approximately 2.56 million acres of corn and 1.27 million acres of soybean were lodged. Further analysis also showed the separation between un-lodged (healthy) fields and lodged fields. The observations in this study can guide future use of SAR-based information for operational crop lodging assessment.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3