Evaluating Feature Extraction Methods with Synthetic Noise Patterns for Image-Based Modelling of Texture-Less Objects

Author:

Hafeez JahanzebORCID,Lee Jaehyun,Kwon SoonchulORCID,Ha Sungjae,Hur Gitaek,Lee SeunghyunORCID

Abstract

Image-based three-dimensional (3D) reconstruction is a process of extracting 3D information from an object or entire scene while using low-cost vision sensors. A structure-from-motion coupled with multi-view stereo (SFM-MVS) pipeline is a widely used technique that allows 3D reconstruction from a collection of unordered images. The SFM-MVS pipeline typically comprises different processing steps, including feature extraction and feature matching, which provide the basis for automatic 3D reconstruction. However, surfaces with poor visual texture (repetitive, monotone, etc.) challenge the feature extraction and matching stage and affect the quality of reconstruction. The projection of image patterns while using a video projector during the image acquisition process is a well-known technique that has been shown to be successful for such surfaces. In this study, we evaluate the performance of different feature extraction methods on texture-less surfaces with the application of synthetically generated noise patterns (images). Seven state-of-the-art feature extraction methods (HARRIS, Shi-Tomasi, MSER, SIFT, SURF, KAZE, and BRISK) are evaluated on problematic surfaces in two experimental phases. In the first phase, the 3D reconstruction of real and virtual planar surfaces evaluates image patterns while using all feature extraction methods, where the patterns with uniform histograms have the most suitable morphological features. The best performing pattern from Phase One is used in Phase Two experiments in order to recreate a polygonal model of a 3D printed object using all of the feature extraction methods. The KAZE algorithm achieved the lowest standard deviation and mean distance values of 0.0635 mm and −0.00921 mm, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3