Author:
Rossi Lorenzo,Mammi Irene,Pelliccia Filippo
Abstract
Bathymetry is considered an important component in marine applications as several coastal erosion monitoring and engineering projects are carried out in this field. It is traditionally acquired via shipboard echo sounding, but nowadays, multispectral satellite imagery is also commonly applied using different remote sensing-based algorithms. Satellite-Derived Bathymetry (SDB) relates the surface reflectance of shallow coastal waters to the depth of the water column. The present study shows the results of the application of Stumpf and Lyzenga algorithms to derive the bathymetry for a small area using an Unmanned Aerial Vehicle (UAV), also known as a drone, equipped with a multispectral camera acquiring images in the same WorldView-2 satellite sensor spectral bands. A hydrographic Multibeam Echosounder survey was performed in the same period in order to validate the method’s results and accuracy. The study area was approximately 0.5 km2 and located in Tuscany (Italy). Because of the high percentage of water in the images, a new methodology was also implemented for producing a georeferenced orthophoto mosaic. UAV multispectral images were processed to retrieve bathymetric data for testing different band combinations and evaluating the accuracy as a function of the density and quantity of sea bottom control points. Our results indicate that UAV-Derived Bathymetry (UDB) permits an accuracy of about 20 cm to be obtained in bathymetric mapping in shallow waters, minimizing operative expenses and giving the possibility to program a coastal monitoring surveying activity. The full sea bottom coverage obtained using this methodology permits detailed Digital Elevation Models (DEMs) comparable to a Multibeam Echosounder survey, and can also be applied in very shallow waters, where the traditional hydrographic approach requires hard fieldwork and presents operational limits.
Subject
General Earth and Planetary Sciences
Reference72 articles.
1. Conservation Issues: Oceanic Ecosystems;Neeman,2015
2. Human impact on coastal topography;Bush;Encycl. Ocean Sci.,2001
3. Environmental Impacts—Coastal Erosion and Coastline Changes;Labuz,2015
4. Dynamics of Coastal Systems;Dronkers,2005
5. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献