An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification

Author:

Kwan ChimanORCID,Gribben David,Ayhan BulentORCID,Li JiangORCID,Bernabe SergioORCID,Plaza Antonio

Abstract

Accurate vegetation detection is important for many applications, such as crop yield estimation, land cover land use monitoring, urban growth monitoring, drought monitoring, etc. Popular conventional approaches to vegetation detection incorporate the normalized difference vegetation index (NDVI), which uses the red and near infrared (NIR) bands, and enhanced vegetation index (EVI), which uses red, NIR, and the blue bands. Although NDVI and EVI are efficient, their accuracies still have room for further improvement. In this paper, we propose a new approach to vegetation detection based on land cover classification. That is, we first perform an accurate classification of 15 or more land cover types. The land covers such as grass, shrub, and trees are then grouped into vegetation and other land cover types such as roads, buildings, etc. are grouped into non-vegetation. Similar to NDVI and EVI, only RGB and NIR bands are needed in our proposed approach. If Laser imaging, Detection, and Ranging (LiDAR) data are available, our approach can also incorporate LiDAR in the detection process. Results using a well-known dataset demonstrated that the proposed approach is feasible and achieves more accurate vegetation detection than both NDVI and EVI. In particular, a Support Vector Machine (SVM) approach performed 6% better than NDVI and 50% better than EVI in terms of overall accuracy (OA).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations;Yengoh,2015

2. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

3. Historical Perspectives on AVHRR NDVI and Vegetation Drought Monitoring;Anyamba;NASA Publ.,2012

4. The map is not the territory. How satellite remote sensing and ground evidence have (Re-)Shaped the image of Sahelian desertification;Herrmann,2015

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3