Abstract
To perform precise approach and landing concerning an aircraft in automatic mode, local airfield-based landing systems are used. For joint processing of measurements of the onboard inertial navigation systems (INS), altimeters and local landing systems, the Kalman filter is usually used. The application of the quadratic criterion in the Kalman filter entails the well-known problem of high sensitivity of the estimate to anomalous measurement errors. During the automatic approach phase, abnormal navigation errors can lead to disaster, so the data fusion algorithm must automatically identify and isolate abnormal measurements. This paper presents a recurrent filtering algorithm that is resistant to anomalous errors in measurements and considers its application in the data fusion problem for landing system measurements with onboard sensor measurements—INS and altimeters. The robustness of the estimate is achieved through the combined use of the least modulus method and the Kalman filter. To detect and isolate failures the chi-square criterion is used. It makes possible the customization of the algorithm in accordance with the requirements for false alarm probability and the alarm missing probability. Testing results of the robust filtering algorithm are given both for synthesized data and for real measurements.
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献