Object-Oriented Open-Pit Mine Mapping Using Gaofen-2 Satellite Image and Convolutional Neural Network, for the Yuzhou City, China

Author:

Chen TaoORCID,Hu Naixun,Niu Ruiqing,Zhen Na,Plaza Antonio

Abstract

Our society’s growing need for mineral resources brings with it the associated risk of degrading our natural environment as well as impacting on neighboring communities. To better manage this risk, especially for open-pit mine (OM) operations, new earth observation tools are required for more accurate baseline mapping and subsequent monitoring. The purpose of this paper is to propose an object-oriented open-pit mine mapping (OOMM) framework from Gaofen-2 (GF-2) high-spatial resolution satellite image (HSRSI), based on convolutional neural networks (CNNs). To better present the different land use categories (LUCs) in the OM area, a minimum heterogeneity criterion-based multi-scale segmentation method was used, while a mean area ratio method was applied to optimize the segmentation scale of each LUC. After image segmentation, three object-feature domains were obtained based on the GF-2 HSRSI: spectral, texture, and geometric features. Then, the gradient boosting decision tree and Pearson correlation coefficient were used as an object feature information reduction (FIR) method to recognize the distinguishing feature that describe open-pit mines (OMs). Finally, the CNN was used by combing the significant features to map the OM. In total, 105 OM sites were extracted from the interpretation of GF-2 HSRSIs and the boundary of each OM was validated by field work and used as inputs to evaluate the open-pit mine mapping (OMM) accuracy. The results revealed that: (1) the FIR tool made a positive impact on effective OMM; (2) by splitting the segmented objects into two groups, training and testing sets which are composed of 70% of the objects, and validation sets which are formed by the remaining 30% of the objects, then combing the selected feature subsets for training to achieve an overall accuracy (OA) of 90.13% and a Kappa coefficient (KC) of 0.88 of the whole datasets; (3) comparing the results of the state-of-the-art method, support vector machine (SVM), in OMM, the proposed framework outperformed SVM by more than 7.28% in OA, 8.64% in KC, 6.15% in producer accuracy of OM and by 9.31% in user accuracy of OM. To the best of our knowledge, it is the first time that OM information has been used through the integration of multiscale segmentation of HSRSI with the CNN to get OMM results. The proposed framework can not only provide reliable technical support for the scientific management and environmental monitoring of open pit mining areas, but also be of wide generality and be applicable to other kinds of land use mapping in mining areas using HSR images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3