Characteristics of BDS Signal-in-Space User Ranging Errors and Their Effect on Advanced Receiver Autonomous Integrity Monitoring Performance

Author:

Wang Zhipeng,Shao Wei,Li Rui,Song Dan,Li Tinglin

Abstract

Signal-In-Space User Range Errors (SIS UREs) are assumed to be overbounded by a normal distribution with a standard deviation represented by the User Range Accuracy (URA). The BeiDou Navigation Satellite System (BDS) broadcast URA is not compatible with the historical SIS URE performance that affects the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) False Alert Probability (Pfa) and availability evaluation. This study compares the BDS broadcast and precise ephemeris from 1 March 2013 to 1 March 2017 to obtain SIS UREs. Through analyzing the statistical characteristics of the SIS UREs, we obtain the standard deviation σURE for the accuracy and continuity and σURA used for the integrity of the SIS UREs. The results show that the broadcast σURA of 2 m cannot completely overbound SIS UREs for all BDS satellites, but the σURA of 2.4 m can. Then, we use the σURA of 2.4 m to evaluate the ARAIM Pfa and availability. The results show that the Pfa may increase to 2 × 10−5 and exceed its limit by an order of magnitude. We also consider the differences between the SIS UREs of Geostationary Earth Orbit (GEO), Inclined Geo-Synchronous Orbit (IGSO), and Medium Earth Orbit (MEO). The results indicate that all Pfa values calculated by the computed σURE are less than the Pfa in the Integrity Support Message (ISM) for the worst-performing GEO satellite. The approximately 55% Pfa calculated by the computed σURE is less than the Pfa in ISM for the worst-performing IGSO satellite. Most Pfa values calculated by the computed σURE is less than the Pfa in the ISM for the worst-performing MEO satellite. For BDS satellites, the Pfa is mainly affected by σURE. When the σURA of 2.4 m is used to evaluate the availability, the computed availability is lower than the availability calculated by the broadcast σURA/σURE and the greatest degradation can reach 25%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3