Robust Tensor-Based DOA and Polarization Estimation in Conformal Polarization Sensitive Array with Bad Data

Author:

Lan Xiaoyu12,Jiang Lai3,Ma Shuang1ORCID,Tian Ye1ORCID,Wang Yupeng12,Wang Ershen12

Affiliation:

1. School of Electronic and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China

2. Key Laboratory of Aerospace Information Sensing and Intelligent Processing Liaoning Province, Shenyang 110136, China

3. State-Owned Changhong Machine Factory, Guilin 541003, China

Abstract

Partially impaired sensor arrays pose a significant challenge in accurately estimating signal parameters. The occurrence of bad data is highly probable, resulting in random loss of source information and substantial performance degradation in parameter estimation. In this paper, a tensor variational sparse Bayesian learning (TVSBL) method is proposed for the estimate of direction of arrival (DOA) and polarization parameters jointly based on a conformal polarization sensitive array (CPSA), taking into account scenarios with the partially impaired sensor array. First, a sparse tensor-based received data model is developed for CPSAs that incorporates bad data. Then, a column vector detection method is proposed to diagnose the positions of the impaired sensors. In scenarios involving partially impaired sensor arrays, a low-rank matrix completion method is employed to recover the random loss of signal information. Finally, variational sparse Bayesian learning (VSBL) and minimum eigenvector methods are utilized sequentially to obtain the DOA and polarization parameters estimation, successively. Furthermore, the Cramér-Rao bound is given for the proposed method. Simulation results validated the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Xingliao Talent Program Project of Liaoning Province

Liaoning Provincial Education Department Facial Project

Songshan Laboratory Pre-Research Project

Natural Science Foundation of Liaoning Province of China

Open Fund of State Key Laboratory of Dynamic Measurement Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3