Crop Classification Based on GDSSM-CNN Using Multi-Temporal RADARSAT-2 SAR with Limited Labeled Data

Author:

Li Heping,Lu Jing,Tian Guixiang,Yang Huijin,Zhao Jianhui,Li NingORCID

Abstract

Crop classification is an important part of crop management and yield estimation. In recent years, neural networks have made great progress in synthetic aperture radar (SAR) crop classification. However, the insufficient number of labeled samples limits the classification performance of neural networks. In order to solve this problem, a new crop classification method combining geodesic distance spectral similarity measurement and a one-dimensional convolutional neural network (GDSSM-CNN) is proposed in this study. The method consisted of: (1) the geodesic distance spectral similarity method (GDSSM) for obtaining similarity and (2) the one-dimensional convolutional neural network model for crop classification. Thereinto, a large number of training data are extracted by GDSSM and the generalized volume scattering model which is based on radar vegetation index (GRVI), and then classified by 1D-CNN. In order to prove the effectiveness of the GDSSM-CNN method, the GDSSM method and 1D-CNN method are compared in the case of a limited sample. In terms of evaluation and verification of methods, the GDSSM-CNN method has the highest accuracy, with an accuracy rate of 91.2%, which is 19.94% and 23.91% higher than the GDSSM method and the 1D-CNN method, respectively. In general, the GDSSM-CNN method uses a small number of ground measurement samples, and it uses the rich polarity information in multi-temporal fully polarized SAR data to obtain a large number of training samples, which can quickly improve the accuracy of classification in a short time, which has more new inspiration for crop classification.

Funder

National Natural Science Foundation of China

Plan of Science and Technology of Kaifeng City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3