A Multivariate Drought Index for Seasonal Agriculture Drought Classification in Semiarid Regions

Author:

Bageshree K.,Abhishek ORCID,Kinouchi TsuyoshiORCID

Abstract

Drought assessment in any region primarily hinges on precipitation deficiency, which is subsequently propagated to various components and sectors, leading to different drought types. In countries such as India, an intricate relationship between various governing factors, drought types, and their quantification methodologies make it elusive to timely initiate government relief measures. This also prevents comprehensive inclusion of the integrated effect of the principal drivers of drought, resulting in ambiguous categorization of severity, where groundwater storage variability is often neglected despite its significant role in irrigation. Here, we developed a multivariate Joint Drought Index (JDI) combining satellite and model-based standardized indices of precipitation and evapotranspiration (SPEI), soil moisture (SSI), groundwater (SGI), and surface runoff (SRI) with different temporal scales by employing two robust methods, principal component analysis (PCA) and Gaussian copula, and applied the index to highly drought-prone Marathwada region from central India. Our novel approach of using different scale combinations of integrated indices for two primary seasons (Kharif and Rabi) provides more realistic drought intensities than multiple univariate indices, by incorporating the response from each index, representing the seasonal drought conditions corroborating with the seasonal crop yields. JDI, with both methods, successfully identified two major drought events in 2015 and 2018, while effectively capturing the groundwater drought. Moreover, despite the high correlation between JDI using PCA and copula, we observed a significant difference in the intensities reported by these methods, where copula detected exceptional drought conditions more frequently than PCA. JDI effectively detected the onset, duration, and termination of drought, where the improved accuracy of drought detection can play a critical role in policy formation and socioeconomic security of the related stakeholders. Seasonal agriculture drought categorization for holistic quantification of drought conditions as presented in this study should provide broad methodological implications on drought monitoring and mitigation measures, especially for agriculture-dominated regions in semiarid climates.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Drought in Numbers 2022—Restoration for Readiness and Resiliencehttps://www.unccd.int/sites/default/files/2022-05/DroughtinNumbers.pdf

2. DROUGHT AS A NATURAL HAZARD

3. EM-DAT: The CRED/OFDA International Disaster Databasewww.emdat.be

4. A review of drought concepts

5. Increasing drought under global warming in observations and models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3