NeXtNow: A Convolutional Deep Learning Model for the Prediction of Weather Radar Data for Nowcasting Purposes

Author:

Albu Alexandra-Ioana,Czibula GabrielaORCID,Mihai Andrei,Czibula Istvan Gergely,Burcea Sorin,Mezghani AbdelkaderORCID

Abstract

With the recent increase in the occurrence of severe weather phenomena, the development of accurate weather nowcasting is of paramount importance. Among the computational methods that are used to predict the evolution of weather, deep learning techniques offer a particularly appealing solution due to their capability for learning patterns from large amounts of data and their fast inference times. In this paper, we propose a convolutional network for weather forecasting that is based on radar product prediction. Our model (NeXtNow) adapts the ResNeXt architecture that has been proposed in the computer vision literature to solve the spatiotemporal prediction problem. NeXtNow consists of an encoder–decoder convolutional architecture, which maps radar measurements from the past onto radar measurements that are recorded in the future. The ResNeXt architecture was chosen as the basis for our network due to its flexibility, which allows for the design of models that can be customized for specific tasks by stacking multiple blocks of the same type. We validated our approach using radar data that were collected from the Romanian National Meteorological Administration (NMA) and the Norwegian Meteorological Institute (MET) and we empirically showed that the inclusion of multiple past radar measurements led to more accurate predictions further in the future. We also showed that NeXtNow could outperform XNow, which is a convolutional architecture that has previously been proposed for short-term radar data prediction and has a performance that is comparable to those of other similar approaches in the nowcasting literature. Compared to XNow, NeXtNow provided improvements to the critical success index that ranged from 1% to 17% and improvements to the root mean square error that ranged from 5% to 6%.

Funder

EEA and Norway Grants

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3