Accurate Spatial Positioning of Target Based on the Fusion of Uncalibrated Image and GNSS

Author:

Liang BinbinORCID,Han Songchen,Li Wei,Fu Daoyong,He Ruliang,Huang GuoxinORCID

Abstract

The accurate spatial positioning of the target in a fixed camera image is a critical sensing technique. Conventional visual spatial positioning methods rely on tedious camera calibration and face great challenges in selecting the representative feature points to compute the position of the target, especially when existing occlusion or in remote scenes. In order to avoid these deficiencies, this paper proposes a deep learning approach for accurate visual spatial positioning of the targets with the assistance of Global Navigation Satellite System (GNSS). It contains two stages: the first stage trains a hybrid supervised and unsupervised auto-encoder regression network offline to gain capability of regressing geolocation (longitude and latitude) directly from the fusion of image and GNSS, and learns an error scale factor to evaluate the regression error. The second stage firstly predicts regressed accurate geolocation online from the observed image and GNSS measurement, and then filters the predictive geolocation and the measured GNSS to output the optimal geolocation. The experimental results showed that the proposed approach increased the average positioning accuracy by 56.83%, 37.25%, 41.62% in a simulated scenario and 31.25%, 7.43%, 38.28% in a real-world scenario, compared with GNSS, the Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) and the supervised deep learning approach, respectively. Other improvements were also achieved in positioning stability, robustness, generalization, and performance in GNSS denied environments.

Funder

Key R&D project of Sichuan Province, China

Sichuan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3