Micro-Doppler Feature Extraction of Rotating Structures of Aircraft Targets with Terahertz Radar

Author:

Qin Xiaoyu,Deng Bin,Wang Hongqiang

Abstract

The micro-Doppler features formed by the micro-motion of rotating blades of rotors and turbines are of great significance for aircraft target detection and recognition. Mastering the micro-motion features is the premise of radar target identification. The blades’ length and rotation rate are vital parameters for classifying aircraft targets. One can instantly judge the type and state of the targets by extracting micro-Doppler features. To extract the micro-Doppler features of rotating blades of the turbine target, we utilized microwave-band and terahertz-band radar to simulate the target and extract the Doppler frequency-shift information. For a turbine model with an obvious blade tip structure, we propose an algorithm based on wavelet coefficient enhancement and inverse Radon transform, integrating the time–frequency analysis with image processing. Under low SNR, this method allows for a high-accuracy parameter estimate. For a two-bladed rotor model without an obvious blade tip structure, we conducted an actual measurement experiment on the model utilizing a 120 GHz radar, and we propose a parameter estimation algorithm based on the fitting of the time–frequency distribution. By fitting the data of the time–frequency diagram, the micro-motion characteristic parameters of the rotor target were obtained. The simulation and experimental results demonstrate the benefits of terahertz radar in target detection, and indicate that the proposed algorithms have the characteristics of high extraction precision and insensitivity to noise.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference21 articles.

1. Advancements in Research on Micro-motion Feature Extraction in The Terahertz Region;Yang;Chin. J. Radars,2018

2. Micro-doppler effect in radar: phenomenon, model, and simulation study

3. Micro-Doppler Effect of Micro-motion Dynamics: A Review;Chen;SPIE,2003

4. Analysis of micro-Doppler signatures

5. Analysis of Micro-Doppler and Parameters Estimation;Chen;Infrared Millim. Waves,2006

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3