DNAS: Decoupling Neural Architecture Search for High-Resolution Remote Sensing Image Semantic Segmentation

Author:

Wang Yu,Li YanshengORCID,Chen WeiORCID,Li Yunzhou,Dang BoORCID

Abstract

Deep learning methods, especially deep convolutional neural networks (DCNNs), have been widely used in high-resolution remote sensing image (HRSI) semantic segmentation. In literature, most successful DCNNs are artificially designed through a large number of experiments, which often consume lots of time and depend on rich domain knowledge. Recently, neural architecture search (NAS), as a direction for automatically designing network architectures, has achieved great success in different kinds of computer vision tasks. For HRSI semantic segmentation, NAS faces two major challenges: (1) The task’s high complexity degree, which is caused by the pixel-by-pixel prediction demand in semantic segmentation, leads to a rapid expansion of the search space; (2) HRSI semantic segmentation often needs to exploit long-range dependency (i.e., a large spatial context), which means the NAS technique requires a lot of display memory in the optimization process and can be tough to converge. With the aforementioned considerations in mind, we propose a new decoupling NAS (DNAS) framework to automatically design the network architecture for HRSI semantic segmentation. In DNAS, a hierarchical search space with three levels is recommended: path-level, connection-level, and cell-level. To adapt to this hierarchical search space, we devised a new decoupling search optimization strategy to decrease the memory occupation. More specifically, the search optimization strategy consists of three stages: (1) a light super-net (i.e., the specific search space) in the path-level space is trained to get the optimal path coding; (2) we endowed the optimal path with various cross-layer connections and it is trained to obtain the connection coding; (3) the super-net, which is initialized by path coding and connection coding, is populated with kinds of concrete cell operators and the optimal cell operators are finally determined. It is worth noting that the well-designed search space can cover various network candidates and the optimization process can be done efficiently. Extensive experiments on the publicly open GID and FU datasets showed that our DNAS outperformed the state-of-the-art methods, including artificial networks and NAS methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3