Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery

Author:

Guo Qian,Zhang Jian,Guo Shijie,Ye ZhangxiORCID,Deng Hui,Hou Xiaolong,Zhang HouxiORCID

Abstract

Timely and accurate information on the spatial distribution of urban trees is critical for sustainable urban development, management and planning. Compared with satellite-based remote sensing, Unmanned Aerial Vehicle (UAV) remote sensing has a higher spatial and temporal resolution, which provides a new method for the accurate identification of urban trees. In this study, we aim to establish an efficient and practical method for urban tree identification by combining an object-oriented approach and a random forest algorithm using UAV multispectral images. Firstly, the image was segmented by a multi-scale segmentation algorithm based on the scale determined by the Estimation of Scale Parameter 2 (ESP2) tool and visual discrimination. Secondly, spectral features, index features, texture features and geometric features were combined to form schemes S1–S8, and S9, consisting of features selected by the recursive feature elimination (RFE) method. Finally, the classification of urban trees was performed based on the nine schemes using the random forest (RF), support vector machine (SVM) and k-nearest neighbor (KNN) classifiers, respectively. The results show that the RF classifier performs better than SVM and KNN, and the RF achieves the highest accuracy in S9, with an overall accuracy (OA) of 91.89% and a Kappa coefficient (Kappa) of 0.91. This study reveals that geometric features have a negative impact on classification, and the other three types have a positive impact. The feature importance ranking map shows that spectral features are the most important type of features, followed by index features, texture features and geometric features. Most tree species have a high classification accuracy, but the accuracy of Camphor and Cinnamomum Japonicum is much lower than that of other tree species, suggesting that the features selected in this study cannot accurately distinguish these two tree species, so it is necessary to add features such as height in the future to improve the accuracy. This study illustrates that the combination of an object-oriented approach and the RF classifier based on UAV multispectral images provides an efficient and powerful method for urban tree classification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Tibet Autonomous Region Science and Technology Plan Project Key Project:

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3