Expansion of the Analytical Modeling of Capacitance for 1-N-1 Multilayered CID Structures with Monotonically Increasing/Decreasing Permittivity

Author:

Khan Anwar Ulla1ORCID

Affiliation:

1. Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia

Abstract

Capacitive sensors that utilize the Coplanar Interdigitated (CID) electrode structure are widely employed in various technical and analytical domains, such as healthcare, infectious disease management, pharmaceuticals, metrology, and environmental monitoring. The present exigency for lab-on-a-chip contrivances and the requisite for the miniaturization of sensors have led to the widespread adoption of CID sensors featuring multiple dielectric layers (DLs), either in the form of substrates or superstrates. Previously, we derived an analytical model for the capacitance of CID capacitive sensors with four distinct 1-N-1 patterns (namely, 1-1-1, 1-3-1, 1-5-1, and 1-11-1) using partial capacitance (PC) and conformal mapping (CM) techniques. The aforementioned model has been employed in various applications wherein the permittivity of successive layers exhibits a monotonic decrease as one moves away from the electrode plane, resulting in highly satisfactory outcomes. Nevertheless, the PC technique is inadequate for structures with multiple layers where the permittivity exhibits a monotonic increase as the distance from the electrodes increases. Given these circumstances, it is necessary to adapt the initial PC method to incorporate these novel configurations. In this work, we have discussed a new approach, splitting the concept of PC into partial parallel capacitance (PPC) and partial serial capacitance (PSC), where new CM transformations are proposed for the latter case. Thus, the present study proposes a novel methodology to expand upon our prior analytical framework, which aims to incorporate scenarios where the permittivity experiences a reduction across successive layers. The outcomes are juxtaposed with the finite element simulation and analytical findings.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3