Modeling of Some Classes of Extended Oscillators: Simulations, Algorithms, Generating Chaos, and Open Problems

Author:

Kyurkchiev Nikolay12ORCID,Zaevski Tsvetelin23ORCID,Iliev Anton12ORCID,Kyurkchiev Vesselin1ORCID,Rahnev Asen1ORCID

Affiliation:

1. Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24, Tzar Asen Str., 4000 Plovdiv, Bulgaria

2. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria

3. Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 5, James Bourchier Blvd., 1164 Sofia, Bulgaria

Abstract

In this article, we propose some extended oscillator models. Various experiments are performed. The models are studied using the Melnikov approach. We show some integral units for researching the behavior of these hypothetical oscillators. These will be implemented as add-on sections of a thoughtful main web-based application for researching computations. One of the main goals of the study is to share the difficulties that researchers (who are not necessarily professional mathematicians) encounter in using contemporary computer algebraic systems (CASs) for scientific research to examine in detail the dynamics of modifications of classical and newer models that are emerging in the literature (for the large values of the parameters of the models). The present article is a natural continuation of the research in the direction that has been indicated and discussed in our previous investigations. One possible application that the Melnikov function may find in the modeling of a radiating antenna diagram is also discussed. Some probability-based constructions are also presented. We hope that some of these notes will be reflected in upcoming registered rectifications of the CAS. The aim of studying the design realization (scheme, manufacture, output, etc.) of the explored differential models can be viewed as not yet being met.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3