Non-Local Parallel Processing and Database Settlement Using Multiple Teleportation Followed by Grover Post-Selection

Author:

Delgado Francisco1ORCID,Cardoso-Isidoro Carlos2ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Science, Atizapan 52926, Mexico

2. Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico

Abstract

Quantum information applications emerged decades ago, initially introducing a parallel development that mimicked the approach and development of classical computer science. However, in the current decade, novel computer-science concepts were rapidly extended to the fields of quantum processing, computation, and communication. Thus, areas such as artificial intelligence, machine learning, and neural networks have their quantum versions; furthermore, the quantum brain properties of learning, analyzing, and gaining knowledge are discussed. Quantum properties of matter conglomerates have been superficially explored in such terrain; however, the settlement of organized quantum systems able to perform processing can open a new pathway in the aforementioned domains. In fact, quantum processing involves certain requisites as the settlement of copies of input information to perform differentiated processing developed far away or in situ to diversify the information stored there. Both tasks at the end provide a database of outcomes with which to perform either information matching or final global processing with at least a subset of those outcomes. When the number of processing operations and input information copies is large, parallel processing (a natural feature in quantum computation due to the superposition) becomes the most convenient approach to accelerate the database settlement of outcomes, thus affording a time advantage. In the current study, we explored certain quantum features to realize a speed-up model for the entire task of processing based on a common information input to be processed, diversified, and finally summarized to gain knowledge, either in pattern matching or global information availability. By using superposition and non-local properties, the most valuable features of quantum systems, we realized parallel local processing to set a large database of outcomes and subsequently used post-selection to perform an ending global processing or a matching of information incoming from outside. We finally analyzed the details of the entire procedure, including its affordability and performance. The quantum circuit implementation, along with tentative applications, were also discussed. Such a model could be operated between large processing technological systems using communication procedures and also on a moderately controlled quantum matter conglomerate. Certain interesting technical aspects involving the non-local control of processing via entanglement were also analyzed in detail as an associated but notable premise.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3