Abstract
We present a finite volume method formulated on a mixed Eulerian-Lagrangian mesh for highly advective 1D hyperbolic systems altogether with its application to plug-flow heat exchanger modeling/simulation. Advection of sharp moving fronts is an important problem in fluid dynamics, and even a simple transport equation cannot be solved precisely by having a finite number of nodes/elements/volumes. Finite volume methods are known to introduce numerical diffusion, and there exist a wide variety of schemes to minimize its occurrence; the most recent being adaptive grid methods such as moving mesh methods or adaptive mesh refinement methods. We present a solution method for a class of hyperbolic systems with one nonzero time-dependent characteristic velocity. This property allows us to rigorously define a finite volume method on a grid that is continuously moving by the characteristic velocity (Lagrangian grid) along a static Eulerian grid. The advective flux of the flowing field is, by this approach, removed from cell-to-cell interactions, and the ability to advect sharp fronts is therefore enhanced. The price to pay is a fixed velocity-dependent time sampling and a time delay in the solution. For these reasons, the method is best suited for systems with a dominating advection component. We illustrate the method’s properties on an illustrative advection-decay equation example and a 1D plug flow heat exchanger. Such heat exchanger model can then serve as a convection-accurate dynamic model in estimation and control algorithms for which it was developed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献