Nature-Inspired Metaheuristic Techniques for Combinatorial Optimization Problems: Overview and Recent Advances

Author:

Rahman Md AshikurORCID,Sokkalingam Rajalingam,Othman MahmodORCID,Biswas KallolORCID,Abdullah LazimORCID,Abdul Kadir EvizalORCID

Abstract

Combinatorial optimization problems are often considered NP-hard problems in the field of decision science and the industrial revolution. As a successful transformation to tackle complex dimensional problems, metaheuristic algorithms have been implemented in a wide area of combinatorial optimization problems. Metaheuristic algorithms have been evolved and modified with respect to the problem nature since it was recommended for the first time. As there is a growing interest in incorporating necessary methods to develop metaheuristics, there is a need to rediscover the recent advancement of metaheuristics in combinatorial optimization. From the authors’ point of view, there is still a lack of comprehensive surveys on current research directions. Therefore, a substantial part of this paper is devoted to analyzing and discussing the modern age metaheuristic algorithms that gained popular use in mostly cited combinatorial optimization problems such as vehicle routing problems, traveling salesman problems, and supply chain network design problems. A survey of seven different metaheuristic algorithms (which are proposed after 2000) for combinatorial optimization problems is carried out in this study, apart from conventional metaheuristics like simulated annealing, particle swarm optimization, and tabu search. These metaheuristics have been filtered through some key factors like easy parameter handling, the scope of hybridization as well as performance efficiency. In this study, a concise description of the framework of the selected algorithm is included. Finally, a technical analysis of the recent trends of implementation is discussed, along with the impacts of algorithm modification on performance, constraint handling strategy, the handling of multi-objective situations using hybridization, and future research opportunities.

Funder

Yayasan UTP (YUTP) ,

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference108 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3