DG-GAN: A High Quality Defect Image Generation Method for Defect Detection

Author:

He Xiangjie1ORCID,Luo Zhongqiang12ORCID,Li Quanyang1ORCID,Chen Hongbo3,Li Feng45ORCID

Affiliation:

1. School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China

2. Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, China

3. Sichuan Shuneng Electric Power Company Ltd., Chengdu 610000, China

4. School of Engineering and Technology, The Open University of Sichuan, Chengdu 610073, China

5. Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100039, China

Abstract

The surface defect detection of industrial products has become a crucial link in industrial manufacturing. It has a series of chain effects on the control of product quality, the safety of the subsequent use of products, the reputation of products, and production efficiency. However, in actual production, it is often difficult to collect defect image samples. Without a sufficient number of defect image samples, training defect detection models is difficult to achieve. In this paper, a defect image generation method DG-GAN is proposed for defect detection. Based on the idea of the progressive generative adversarial, D2 adversarial loss function, cyclic consistency loss function, a data augmentation module, and a self-attention mechanism are introduced to improve the training stability and generative ability of the network. The DG-GAN method can generate high-quality and high-diversity surface defect images. The surface defect image generated by the model can be used to train the defect detection model and improve the convergence stability and detection accuracy of the defect detection model. Validation was performed on two data sets. Compared to the previous methods, the FID score of the generated defect images was significantly reduced (mean reductions of 16.17 and 20.06, respectively). The YOLOX detection accuracy was significantly improved with the increase in generated defect images (the highest increases were 6.1% and 20.4%, respectively). Experimental results showed that the DG-GAN model is effective in surface defect detection tasks.

Funder

National Natural Science Foundation of China

Innovation Fund of Engineering Research Center of the Ministry of Education of China, Digital Learning Technology Integration, and Application

Sichuan Science and Technology Program

Sichuan University of Science and Engineering Talent Introduction

Innovation Fund of Chinese Universities

Artificial Intelligence Key Laboratory of Sichuan Province

2021 Graduate Innovation Fund of Sichuan University of Science and Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3