Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild

Author:

Sarker Mohammad IbrahimORCID,Losada-Gutiérrez CristinaORCID,Marrón-Romera MartaORCID,Fuentes-Jiménez DavidORCID,Luengo-Sánchez SaraORCID

Abstract

Surveillance cameras are being installed in many primary daily living places to maintain public safety. In this video-surveillance context, anomalies occur only for a very short time, and very occasionally. Hence, manual monitoring of such anomalies may be exhaustive and monotonous, resulting in a decrease in reliability and speed in emergency situations due to monitor tiredness. Within this framework, the importance of automatic detection of anomalies is clear, and, therefore, an important amount of research works have been made lately in this topic. According to these earlier studies, supervised approaches perform better than unsupervised ones. However, supervised approaches demand manual annotation, making dependent the system reliability of the different situations used in the training (something difficult to set in anomaly context). In this work, it is proposed an approach for anomaly detection in video-surveillance scenes based on a weakly supervised learning algorithm. Spatio-temporal features are extracted from each surveillance video using a temporal convolutional 3D neural network (T-C3D). Then, a novel ranking loss function increases the distance between the classification scores of anomalous and normal videos, reducing the number of false negatives. The proposal has been evaluated and compared against state-of-art approaches, obtaining competitive performance without fine-tuning, which also validates its generalization capability. In this paper, the proposal design and reliability is presented and analyzed, as well as the aforementioned quantitative and qualitative evaluation in-the-wild scenarios, demonstrating its high sensitivity in anomaly detection in all of them.

Funder

Ministerio de Economía y Competitividad

Universidad de Alcalá

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3