Improved Ice Velocity Measurements with Sentinel-1 TOPS Interferometry

Author:

Andersen Jonas KvistORCID,Kusk AndersORCID,Boncori John Peter Merryman,Hvidberg Christine SchøttORCID,Grinsted AslakORCID

Abstract

In recent years, the Sentinel-1 satellites have provided a data archive of unprecedented volume, delivering C-band Synthetic Aperture Radar (SAR) acquisitions over most of the polar ice sheets with a repeat-pass period of 6–12 days using Interferometric Wide swath (IW) imagery acquired in Terrain Observation by Progressive Scans (TOPS) mode. Due to the added complexity of TOPS-mode interferometric processing, however, Sentinel-1 ice velocity measurements currently rely exclusively on amplitude offset tracking, which generates measurements of substantially lower accuracy and spatial resolution than would be possible with Differential SAR Interferometry (DInSAR). The main difficulty associated with TOPS interferometry lies in the spatially variable azimuth phase contribution arising from along-track motion within the scene. We present a Sentinel-1 interferometric processing chain, which reduces the azimuth coupling to the line-of-sight phase signal through a spatially adaptive coregistration refinement incorporating azimuth velocity measurements. The latter are based on available ice velocity mosaics, optionally supplemented by Burst-Overlap Multi-Aperture Interferometry. The DInSAR processing chain is demonstrated for a large drainage basin in Northeast Greenland, encompassing the Northeast Greenland Ice Stream (NEGIS), and integrated with state-of-the-art offset tracking measurements. In the ice sheet interior, the combined DInSAR and offset tracking ice velocity product provides a spatial resolution of 50 × 50 m and 1-sigma accuracies of 0.18 and 0.44 m/y in the x and y components respectively, compared to GPS.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3