Remotely Sensed Urban Surface Ecological Index (RSUSEI): An Analytical Framework for Assessing the Surface Ecological Status in Urban Environments

Author:

Firozjaei Mohammad KarimiORCID,Fathololoumi Solmaz,Weng QihaoORCID,Kiavarz MajidORCID,Alavipanah Seyed Kazem

Abstract

Urban Surface Ecological Status (USES) reflects the structure and function of an urban ecosystem. USES is influenced by the surface biophysical, biochemical, and biological properties. The assessment and modeling of USES is crucial for sustainability assessment in support of achieving sustainable development goals such as sustainable cities and communities. The objective of this study is to present a new analytical framework for assessing the USES. This analytical framework is centered on a new index, Remotely Sensed Urban Surface Ecological index (RSUSEI). In this study, RSUSEI is used to assess the USES of six selected cities in the U.S.A. To this end, Landsat 8 images, water vapor products, and the National Land Cover Database (NLCD) land cover and imperviousness datasets are downloaded for use. Firstly, Land Surface Temperature (LST), Wetness, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Soil Index (NDSI) are derived by remote sensing methods. Then, RSUSEI is developed by the combination of NDVI, NDSI, Wetness, LST, and Impervious Surface Cover (ISC) with Principal Components Analysis (PCA). Next, the spatial variations of USES across the cities are evaluated and compared. Finally, the association degree of each parameter in the USES modeling is investigated. Results show that the spatial variability of LST, ISC, NDVI, NDSI, and Wetness is heterogeneous within and between cities. The mean (standard deviation) value of RSUSEI for Minneapolis, Dallas, Phoenix, Los Angeles, Chicago and Seattle yielded 0.58 (0.16), 0.54 (0.17), 0.47 (0.19), 0.63 (0.21), 0.50 (0.17), and 0.44 (0.19), respectively. For all the cities, PC1 included more than 93% of the surface information, which is contributed by greenness, moisture, dryness, heat, and imperviousness. The highest and lowest mean values of RSUSEI are found in “Developed, High intensity” (0.76) and “Developed, Open Space” (0.35) lands, respectively. The mean correlation coefficient between RSUSEI and LST, ISC, NDVI, NDSI, and Wetness, is 0.47, 0.97, −0.31, 0.17, and −0.27, respectively. The statistical significance of these correlations is confirmed at 95% confidence level. These results suggest that the association degree of ISC in USES modeling is the highest, despite the differences in land cover and biophysical characteristics in the cities. RSUSEI could be very useful in modeling and comparing USES across cities with different geographical, climatic, environmental, and biophysical conditions and can also be used for assessing urban sustainability over space and time.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3