Generating Elevation Surface from a Single RGB Remotely Sensed Image Using Deep Learning

Author:

Panagiotou Emmanouil,Chochlakis Georgios,Grammatikopoulos Lazaros,Charou Eleni

Abstract

Generating Digital Elevation Models (DEM) from satellite imagery or other data sources constitutes an essential tool for a plethora of applications and disciplines, ranging from 3D flight planning and simulation, autonomous driving and satellite navigation, such as GPS, to modeling water flow, precision farming and forestry. The task of extracting this 3D geometry from a given surface hitherto requires a combination of appropriately collected corresponding samples and/or specialized equipment, as inferring the elevation from single image data is out of reach for contemporary approaches. On the other hand, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have experienced unprecedented growth in recent years as they can extrapolate rules in a data-driven manner and retrieve convoluted, nonlinear one-to-one mappings, such as an approximate mapping from satellite imagery to DEMs. Therefore, we propose an end-to-end Deep Learning (DL) approach to construct this mapping and to generate an absolute or relative point cloud estimation of a DEM given a single RGB satellite (Sentinel-2 imagery in this work) or drone image. The model has been readily extended to incorporate available information from the non-visible electromagnetic spectrum. Unlike existing methods, we only exploit one image for the production of the elevation data, rendering our approach less restrictive and constrained, but suboptimal compared to them at the same time. Moreover, recent advances in software and hardware allow us to make the inference and the generation extremely fast, even on moderate hardware. We deploy Conditional Generative Adversarial networks (CGAN), which are the state-of-the-art approach to image-to-image translation. We expect our work to serve as a springboard for further development in this field and to foster the integration of such methods in the process of generating, updating and analyzing DEMs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3